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Abstract

Interview is a computational fluid dynamics visualization application
for which processing is distributed between high performance graphics
workstations and supercomputers. Facilities are provided in the
application for more than one user to view shared images creating a
cooperative visualization environment. The way in which the
computation is partitioned between the supercomputer and the
workstations is critical to the capability of the application to present
simultaneous, identical, animated images of fluid dynamics to more
than one user.

1. Introduction

Scientific visualization has become increasingly important in the analysis of large
data sets. The pattern-recognition capabilities of the visual sense are utilized to

analyze much greater quantifies of visually transformed data than is possible with
purely numeric data [8, 20].

Recently developed computer tools which facilitate the collaborative process have
found that a WYSIW!S (what you see is what I see) interface is valuable. This type
of interface provides for the =presentation of consistent images of shared information
to all participants'[23]. Such an interface applied to visualization would allow
scientists to see and interact with each other's work through their workstations.

For an application such as the visualization of computational fluid dynamics (CFD)
[2], the technological requirements for a cooperative system can be daunting [13].
How the partitioning of the computation is accomplished will determine which
visualization techniques are both interactive and cooperative.

The problem might be stated as how can one best utilize the capabilities of high
performance graphics workstations, supercomputers and networks to provide a
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system for visualizing complex CFD data cooperatively

2. Background

In CFD the increased capabilities of supercomputers has in turn dramatically
increased the size and complexity of numerical simulations of fluid flow [19]. As the

size of the simulations increases, the size of the solution data also increases and can
result in data sets representing the physical characteristics of a flow field which are
immense.

Despite advances in the delivery of computational power to users of high-
performance graphics workstations, there remain visualization applications for
which the computational requirements can only be met by supercomputers. The
combined capabilites of the supercomputer and the high-performance graphics
workstation can be utilized in distributed visualization applications. There are a

number of different approaches to distributing the visualization process over
supercomputers, graphics workstations and other machines [5, 17, 18, 19, 25].

Visualizationtechniques which utilizethe advanced capabilitiesofhigh-performance

graphics workstations are for the most part not transportable beyond the
workstation without some loss of informational content: resolution degradation,

colordegradation, lack of motion or animation, or lack ofinteractivity.This lack of

transportabilitymakes itdifficultto communicate the results of the visualization

process to collaborators.

Interview is a tool for visualizing CFD. Processing in Interview is distributed

between a high performance graphics workstation and a supercomputer. The
computational environment on the supercomputer may be shared with another
workstation to provide a cooperative visualization environment.

The development of Interview is necessarily an interdisciplinary endeavor: CFD,

graphics, distributed processing, supercomputing, and computer-supported
cooperative work (CSCW). This paper focuses on the CSCW and distributed
processing aspects of Interview, discussing the other aspects as necessary to
understand the overall application.
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3. Facilitating Collaboration

One model of a collaborative environment is represented in this simple diagram [21]:

Receiver/Sender _.

Shared Space

Conversation Receiver/Sender

The idea of WYSIWIS follows somewhat from this basic model. The shared access to

information makes the symbolic representation of the data more concrete.

In the typical visualization application a single user is "alone" with her data. When
an interesting image is produced on the graphics monitor, it's common in our
laboratory to call co-workers to the monitor to see what has been produced. With the
shared view of the monitor, the collaborative environment outlined above is created.

Scientist = Conversation

Graphics Monitor

W

Scientist

Collaborators who are in another building or another city however, cannot

participate in this environment.

Interview builds on the basic model to provide an environment where distance is not

a deterrent to creating the collaborative environment. For Interview, the shared

space resides on the supercomputer, the images are rendered on separate graphics
workstations and can present either identical or different images.
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Network

Supercomputer

( Cray YMP )

I

Graphics Monitor
(SGI IRIS)

Graphics Monitor
(SGI IRIS)

4. The Computational Environment

One of the main objectives of the Numerical Aerodynamic Simulation (NAS)
Program at NASA Ames Research Center is the provision of a comprehensive
computing environment to facilitate computational aerodynamics and fluid
dynamics research [1]. To this end the NAS Processing System Network (NPSN)
was developed. The NPSN contains a wide range of computer systems, including
two high-speed processors (currently, a Cray 2 4/256 and a Cray YMP 8/128) and a
small army of Silicon Graphics IRIS workstations. Several networks are employed
to provide connectivity and a basis for network development and research. These
networks include Ethernet, HYPERchannel, UltraNet, and Pronet-80.

The main vehicle for distributing computation between supercomputers and
workstations in Interview is Distributed Library (dlib) [27]. Like many systems
which provide for distributed processing, dlib is based on the remote procedure call
(RPC) model [3, 9, 24, 26]. However, unlike most of these systems, dlib was

developed to provide a service which allows for a conversation of arbitrary length
within a single context between client and server. The dlib server process is
designed to be capable of storing state information which persists from call to call, as
well as allocating memory for data storage and manipulation. While RPC protocols
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are frequently likened to local procedure calls without side effects, dlib more closely
resembles the extension of the process environment to include the server process.

5. The CFD Application

The process involved in CFD research can be broken down into three steps: grid
generation, numerical simulation of fluid flow, and post-processing of the resulting
flow solution data. A numerical grid is created describing an object and the fluid

space surrounding the object. Flow solvers calculate physical properties of the flow
at the nodes of the grid. The flow solution can be steady state, in which the physical

properties at each node do not change over time, or unsteady, in which changes in
the physical properties are observed over time.

Typical post-processing data sets consist of a grid file, containing the x, y, and z
coordinate values for corresponding grid nodes, and a solution file, containing the

values for density, energy, and momentum in three dimensions for each grid node.
Density and energy are scalar values while momentum is a three dimensional vector.
A steady state solution data set would contain a grid file and a solution file. An
unsteady solution data set would contain a grid file and a solution file per time step.
Typical grid sizes can be as large as several million nodes. Due to storage
considerations unsteady solution data sets are usually truncated in some manner

but can still consume multiple gigabytes of storage space.

With the basic solution values of density, energy and momentum, other physical
characteristics of the flow can be calculated. Other scalar values that may be

calculated include such quantities as temperature, pressure, velocity magnitude,

and kinetic energy. Other vector fields include velocity, vorticity, and gradients of
scalar fields such as the pressure gradient. A variety of visualization techniques can
be applied to these scalar and vector fields.

To get an idea of how the visualization process works in a distributed and
cooperative environment, the data of the numerical simulation of the unsteady fluid
flow past a tapered cylinder [14] will be used as an example. The grid for the tapered
cylinder is relatively small at 128 K nodes. A data set representing 256 time steps is
used for the visualization.
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Tapered Cylinder Data:

Grid: 32 x 64 x 64 nodes, 131,072 nodes, or 393,216 words

IRIS format: 1,572,864 bytes

Cray format: 3,145,728 bytes

Solution: 256 time steps for 5 physical values, 167,772,160 words

IRIS format: 671,088,640 bytes

Cray format: 1,342,177,280 bytes

There are a varietyof visualizationtechniques which can be applied to thisdata but
this discussion willbe limited to grid surfaces colored by a scalar value. A grid

surfaceisa 2-D subset ofthe 3-D grid.

I

|

Wire frame of full
tapered cylinder grid Examples of grid surfaces

Approximate data size over 256 time steps: 4 Mbytes

6. Problem Decomposition

Again, the problem might be stated as how can one best utilizethe capabilitiesof

high performance graphics workstations,supercomputers and networks to provide a

system forvisualizingcomplex CFD data cooperatively.

One method for visualizing a data set like the tapered cylinder is to look at a

physical characteristicof the flow over time. Calculated values for,say,velocity
magnitude can be mapped to colorvalues and displayed fora grid surface. The area

between the grid points can be rendered with interpolated colorvalues using the

Gouraud shading capabilityofthe IRIS Graphics Library. Successive time steps can

be rendered to createan animation.

-6-



The basic steps involved in creating a grid surface animation are:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Extract data for grid surface from solution data set.

Calculate scalar values for each node in the grid surface data.

Map scalar values to color values.

Render and display surface with Gouraud shaded polygons.

Animate by displaying surfaces sequentially by time step.

Since the environment has many tools available, _using the appropriate tool for the
task _ should be one guide. In order to use the appropriate tool, one must understand

their capabilities. Simply stated:

The supercomputer-

- large number of MFLOPS

- large memory space

• large disk space

- fast disk to memory I/O

. fast I/O to networks

. 64 bit word

The workstation -

m

u

m

n

high performance graphics

user interface tools

medium size memory

medium size disk

relatively slow disk speed

medium I/O speed to networks

- 32 bit word

Distributing the tasks between the workstation and the supercomputer results in

this organization:

i. Store original flow solution and grid data on Cray disk in IRIS format.
This puts the smallest format for the data on the fastest medium for the
data.

ii. Read grid data into Cray memory. The grid data may remain in IRIS
format as, for this visualization technique, no numerical manipulation

of the grid is required.
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111. Extract solution data for grid surface from disk. To optimize reads from
disk the flow data has been organized to contain the values for the five

physical characteristics over all the time steps for each node in
contiguous memory space on disk. This allows for reads in larger
blocks.

iv. Translate extracted data to Cray format for numerical manipulation.
Translation routines are fully vectorized and very fast.

v. Calculate the scalar value over the grid surface data for all the time
steps. Calculation over large amounts of data is the best utilization of
Cray CPU power.

vi. Map scalar values to color values, again using Cray CPU power.

vii. Translate color values to IRIS format.

viii. Extract grid coordinate data for grid surface from grid data in Cray
memory (IRIS format).

ixa Transfer grid coordinate data and grid surface color values to IRIS over
network.

X. Use grid coordinate information as vertices for IRIS Graphics Library
calls with grid surface color values. Gouraud shade polygons formed by
vertices to interpolate color over the surface.

xi. Display sequentially one time step at a time to animate grid surface.

The following is a diagram of the process outlined above.

-8-



Grid Data
in Memory

v

Extracted Grid Surface
Solution Data

Cray Format Solution
Data

Calculated Grid Surface
Scalar Values

Mapped Color
Values

Network

IRIS

Grid Surface Coordinates

IRIS Format Color
Values

IRIS

Graphics
Library

Each of the steps which are performed on the Cray are implemented with dlib calls
with the Cray acting as the server machine. Using dlib requires an initial call to

cll_init, which establishes a connection between the client and an appllcation-specific
server. The server is a process on the remote machine which behaves as an
extension of the application's environment. The remote process persists from dlib
call to dlib call and state information, such as open file descriptors or allocated

memory, as part of this process also persist. The remote process receives dlib calls
from the client via the network, executes the designated subroutine, and sends
return values back to the client over the network.

Step iiiabove isan example ofhow dlibisused and isdescribedin detailbelow. Dlib

callsare invoked on the IRIS, so here "locaF refersto the IRIS and "remote r refersto

the Cray.

1. Memory to contain the grid surface data is allocatedon the Cray using
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the standard dl_malloc dlibcall.This returns a memory descriptorfor

the remote memory segment.

2. The solution file on the Cray is opened with the standard dl_open call.

, An application-specific dlib routine is implemented which performs the
sequence of reads and seeks to extract the solution data for the desired
grid surface from the remote solution file. The memory descriptor from
step 1 is passed as an argument to this routine as the buffer for the
extracted data.

. The resultisa bufferon the Cray which contains the solutiondata for
the desired grid surface which can be referred to by a memory

descriptor.

Memory descriptorsremain validuntilthe memory is explicitlyfreed using dl_free.

The memory descriptorin the example above would be further used (step iv)as an

argument to a dlibdata translationroutine.

7. WYSIWIS

The dlib application-specific server provides a substrate for the shared space of the
collaborative environment model. The CFD data to be visualized, and the

intermediate results of graphics processing (e.g., mapped color values, coordinate
information), are contained in the server process.

Dlib was originally designed on a model of one client to one server. To allow multiple

clients to share the server process environment, the dlib server was modified to
accept more than one connection. Each connection is selected for service by the

server process as dlib calls are received.

In Interview three connections are created: first client to server, second client to

server, and second client to first client. The first client initiates the dlib server,
connects to the server, and registers in the server an address at which the first client
is accepting connections. The second client connects to the server, reads the first
client's address, and connects to the first client.
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Dlib Application-Specific Dlib Server Process

Registers Name and Address

First Client

Initiates Server Process
Connects to Server

dill

Connects to First Client

Receives
First Client's
Address

_r

Second Client

The first client will have been active for an arbitrary length of time when the second

client is invoked. As such, the image data the first client is presenting may contain

a number of grid surfaces. The first client maintains a list of descriptions of the grid
surfaces it is currently viewing. Upon request, this list is sent to the second client.
From this list, the second client has the information to allow it to transfer the image
data from the server process using dlib calls in the same way that the first client
received this data.

The second client now is able to view the same image data as the first client with its
own view transformation and animation sequencing. Interview provides mouse
driven interaction to zoom, translate, and rotate the 3-D images. Mouse driven
interaction is also used to control the animation sequencing. These controls are

individual to each client. Consequently, the two clients at this point are viewing the

same 3-D image data but may have different viewing perspectives.

The ability to individually view the same data is analogous to two people looking at a
3D object, say, an open book. One person can see the title and author on the front
cover, while the other can read the pages. While their views are different, there is a
shared context for conversing.
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Cray Dlib Process

Grid Surface Coordinates

IRIS Format Color
Values

First Client

Grid Surface Coordinates

IRIS Format Color
Values

Sends location of

data on Cray

Transfers data 1from Cray

Second Client

Grid Surface Coordinates

IRIS Format Color
Values

I
IRIS

Graphics
Library

View
Trans-

formations

I

Ir

IRIS

Graphics
Library

View
Trans-

formations
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To present a consistent image on both monitors simultaneously view trans-
formations and animation sequencing must be consistent. The transformation
matrix controls the mapping between coordinate data and the screen representation.
In order for consistent images to be viewed by beth clients, the first client gets a copy
of its current transformation matrix and sends it to the second client. The second
client in turn loads this new transformation matrix, creating a consistent image on
both monitors. Animation sequencing information can also be exchanged to

synchronize the animation frame by frame.

To Cray To Cray

First Client

Grid Surface Coordinates

IRIS Format Color
Values

Sends transformation

matrix

Gets transformation
matrix

Second Client

Grid Surface Coordinates

IRIS Format Color
Values

Loads transformatior_

matrix

IRIS

Graphics
Library

View
Trans-

formations

IRIS

Graphics
Library

View
Trans-

formations
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8. Discussion

There are many ways of distributing the computational workload for graphics
applications between supercomputers and workstations [7, 11, 15, 18]. The impact of
the network on the performance of these systems is certainly dependent on the
bandwidth and latency of the network, but also the performance is dependent on the
partitioning of the computation. The following is a simple block diagram of a
visualization process:

I I Graphics .._i Image
Processed

Raw Data _ Data Library "-I Display
I

One way to partition the computation of this process is to complete everything except
the image display on the supercomputer [12, 13, 15, 16, 17, 18]. Image data is then
transferred over the network to a workstation or frame buffer for display This can
turn out to be quite a large amount of data to transfer over the network; perhaps,
24 bits per pixel by 1024 by 1280 pixels per frame. The data transfer rate at 24
frames per second would then be approximately 90 MBytes per second. Maintaining
this transfer rate to two or more workstations or frame buffers in a cooperative effort
would be difficult.

While the advent of high speed networks in the gigabit-per-second range [4, 6, 10]
removes a potential bottleneck in the performance of these distributed applications,
high speed networks are not a panacea. Even though some networks may be capable
of transferring data at a rate of a gigabit-per-second, it will be some time before
workstations are capable of transferring or receiving data at that speed. Even so,
image data transfer at animation speeds would be difficult to sustain.

A second way to partition the distributed visualization problem is to use the graphics

library calls as the medium of exchange between the client and server [5, 18, 22].
This method is in essence a remote procedure call package for graphics routines.
While requiring less data to be transferred than the image transfer method, a
difficulty arises for interactivity. For real-time graphics manipulations such as

handling mouse interactions, the network transactions required to handle the
interactions can greatly reduce response time.

Interview places the partition between the processed data and the graphics library
calls. In this way the minimum amount of data is transferred over the network.
Interactivity and animation control is handled locally without network overhead.
Only when identical views are to be shared by cooperating processes are network
transactions required to handle interactivity. With the processing partitioned in

this way, Interview is operational over networks with modest transfer rates, such as
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Ethernet. Network speed has its greatest impact on the transfer of the processed

data from the supercomputer to the workstation, but does not impact the viewing of
animations. For transmission of the transformation matrices, the network only need

transmit between 20 and 30 small packets per second to support full animation
speeds. This is well within Ethernet's range.

9. Concluslon

The visualization of CFD is in essence an attempt to understand the physical
characteristics of simulated fluid flow by examining subsets of a large data set
represented by visual symbols, colors, and shapes. For unsteady flow solutions,
animation adds another dimension to the analysis. It is difficult to share the

process of analysis without a means to share the visual images. Not just viewing the

visual images, but the whole process of interacting with the visual images, of
selecting subsets, of controlling the animation, are important elements of
collaboration. Interview demonstrates that careful partitioning of processing

between supercomputers and workstations can produce an efficient system for
cooperative visualization of CFD.
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